
Week 3 – Friday



 What did we talk about last time?
 List implementation with a dynamic array
 Running time of array-backed list
 Brief introduction to stacks







Bitmap Manipulator





 A stack is a simple (but useful) ADT that has three basic 
operations:
 Push Put an item on the top of the stack
 Pop Remove an item from the top of the stack
 Top Return the item currently on the top of the stack

(sometimes called peek)



 When are stacks used?
 Implicitly, in recursion (or in any function calls)
 Explicitly, when turning recursive solutions into iterative solutions
 When parsing programming languages
 When converting infix to postfix





 Advantages:
 Pop is Θ(1)
 Top is Θ(1)

 Disadvantages
 Push is Θ(n) in the very worst case, but not in the amortized case



public class ArrayStack<E> {
private E[] data;
private int size;

public ArrayStack() {}
public void push(E value) {}
public E pop() {}
public E peek() {} // Instead of top
public int size() {}

}















 A queue is a simple data structure that has three basic 
operations (very similar to a stack)
 Enqueue Put an item at the back of the queue
 Dequeue Remove an item from the front of the queue
 Front Return the item at the front of the queue

 A queue is considered FIFO (First In First Out) or LILO (Last In 
Last Out)



 Queues are useful whenever you want to keep track of the 
order of arrival
 A line in a fast food restaurant
 A job in a printer queue
 A buffer for managing data



 A queue is a little bit harder to implement than a stack with an 
array

 The trouble is that you're enqueuing and dequeuing from 
different ends

 Removing something from the front seems to imply that 
you'll need to shift over all the contents of the array

 Enter the circular array!



 A circular array is just a regular array
 However, we keep a start index as well as a size that lets us 

start the array at an arbitrary point
 Then, the contents of the array can go past the end of the 

array and wrap around
 The  modulus operator (%) is a great way to implement the 

wrap around



1. Starting array

2. Enqueue 9

3. Dequeue

4. Dequeue

5. Enqueue 14

6. Dequeue
18 3 21 9

Start Size = 4

7 18 3 21 9

Start Size = 5

7 18 3 21

Start Size = 4

14 3 21 9

Start Size = 4

14 21 9

Start Size = 3

3 21 9

Start Size = 3



 Advantages:
 Dequeue is Θ(1)
 Front is Θ(1)

 Disadvantages
 Enqueue is Θ(n) in the very worst case, but not in the amortized case



public class ArrayQueue {
private E[] data = (E[]) new Object[10];
private int start = 0;
private int size = 0;

public void enqueue(E value) {}
public E dequeue() {}
public E front() {}
public int size() {}

}













 Array implementation of queues
 Introduction to linked lists



 Keep reading section 1.3
 Finish Assignment 2
 Due tonight by midnight!

 Keep working on Project 1
 Due next Friday, September 20 by midnight

 Due to a meeting, I will not be available for most of my office 
hours from 1:45-2:45 today
 However! Professor Stucki and Dr. Çal also have lab hours at those 

times and can help you
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