
Week 3 – Friday

 What did we talk about last time?
 List implementation with a dynamic array
 Running time of array-backed list
 Brief introduction to stacks

Bitmap Manipulator

 A stack is a simple (but useful) ADT that has three basic
operations:
 Push Put an item on the top of the stack
 Pop Remove an item from the top of the stack
 Top Return the item currently on the top of the stack

(sometimes called peek)

 When are stacks used?
 Implicitly, in recursion (or in any function calls)
 Explicitly, when turning recursive solutions into iterative solutions
 When parsing programming languages
 When converting infix to postfix

 Advantages:
 Pop is Θ(1)
 Top is Θ(1)

 Disadvantages
 Push is Θ(n) in the very worst case, but not in the amortized case

public class ArrayStack<E> {
private E[] data;
private int size;

public ArrayStack() {}
public void push(E value) {}
public E pop() {}
public E peek() {} // Instead of top
public int size() {}

}

 A queue is a simple data structure that has three basic
operations (very similar to a stack)
 Enqueue Put an item at the back of the queue
 Dequeue Remove an item from the front of the queue
 Front Return the item at the front of the queue

 A queue is considered FIFO (First In First Out) or LILO (Last In
Last Out)

 Queues are useful whenever you want to keep track of the
order of arrival
 A line in a fast food restaurant
 A job in a printer queue
 A buffer for managing data

 A queue is a little bit harder to implement than a stack with an
array

 The trouble is that you're enqueuing and dequeuing from
different ends

 Removing something from the front seems to imply that
you'll need to shift over all the contents of the array

 Enter the circular array!

 A circular array is just a regular array
 However, we keep a start index as well as a size that lets us

start the array at an arbitrary point
 Then, the contents of the array can go past the end of the

array and wrap around
 The modulus operator (%) is a great way to implement the

wrap around

1. Starting array

2. Enqueue 9

3. Dequeue

4. Dequeue

5. Enqueue 14

6. Dequeue
18 3 21 9

Start Size = 4

7 18 3 21 9

Start Size = 5

7 18 3 21

Start Size = 4

14 3 21 9

Start Size = 4

14 21 9

Start Size = 3

3 21 9

Start Size = 3

 Advantages:
 Dequeue is Θ(1)
 Front is Θ(1)

 Disadvantages
 Enqueue is Θ(n) in the very worst case, but not in the amortized case

public class ArrayQueue {
private E[] data = (E[]) new Object[10];
private int start = 0;
private int size = 0;

public void enqueue(E value) {}
public E dequeue() {}
public E front() {}
public int size() {}

}

 Array implementation of queues
 Introduction to linked lists

 Keep reading section 1.3
 Finish Assignment 2
 Due tonight by midnight!

 Keep working on Project 1
 Due next Friday, September 20 by midnight

 Due to a meeting, I will not be available for most of my office
hours from 1:45-2:45 today
 However! Professor Stucki and Dr. Çal also have lab hours at those

times and can help you

	COMP 2100
	Last time
	Questions?
	Assignment 2
	Project 1
	Stacks
	Stack
	Keeping track of things
	Implementations
	Array implementations
	Array implementation
	Array Constructor
	Array Push
	Array Pop
	Array Peek
	Array Size
	Queues
	Queue
	Application of queues
	Circular array implementation
	Circular array
	Circular array example
	Circular array implementation
	Circular array implementation
	Circular Array Front
	Circular Array Get Size
	Circular Array Enqueue
	Circular Array Dequeue
	Upcoming
	Next time…
	Reminders

